Exponentially convex functions generated by Wulbert’s inequality and Stolarsky-type means

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stolarsky Type Inequality for Sugeno Integrals on Fuzzy Convex Functions

Recently, Flores-Franulič et al. [A note on fuzzy integral inequality of Stolarsky type, Applied Mathematics and Computation 208 (2008) 55-59] proved the Stolarsky’s inequality for the Sugeno integral on the special class of continuous and strictly monotone functions. This result can be generalized to a general class of fuzzy convex functions in this paper. We also give a fuzzy integral inequal...

متن کامل

Generalization of Stolarsky Type Means

provided that f : a, b → is a convex function 1, page 137 , 2, page 1 . This result for convex functions plays an important role in nonlinear analysis. These classical inequalities have been improved and generalized in a number of ways and applied for special means including Stolarsky type, logarithmic, and p-logarithmic means. A generalization of H.H inequalities was obtained in 3–5 , 2, page ...

متن کامل

JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS

In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.

متن کامل

An inequality related to $eta$-convex functions (II)

Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2012

ISSN: 0895-7177

DOI: 10.1016/j.mcm.2011.11.032